Domain Adaptation
Neural Machine Translation

Yasmin Moslem, ADAPT Centre, Dublin City University
Motivation

Story

• You got a new Machine Translation project.
• Surprise: in-domain dataset is too small
• Generic MT model: Vice President vs. Deputy Chairperson
• What to do?!
Solution
Domain Adaptation

- Big generic/out-of-domain dataset (vocabulary & syntax)
- Small specialised/in-domain dataset (terminology & style)
Quiz

• Think for two domains or two languages; one has a lot of resources and one has limited resources.
Combining Training Data
Does it work?

• Hint: Just combining both the big generic corpus and the specialised one will *not* work. Why?
Combining Training Data

Does it work?

• Hint: Just combining both the big generic corpus and the specialised one will not work. Why?
 • Retraining for a long time
 • In-domain data is small and its effect is limited
Combining Training Data
Does it work?

• Hint: Just combining both the big generic corpus and the specialised one will \textit{not} work. Why?
 • Retraining for a long time
 • In-domain data is small and its effect is limited

• Suggestions to make it work?
Domain Adaptation Approaches (that work!)

- Incremental Training / Fine-tuning
- Ensemble Decoding
- Data Weighting
- Using Monolingual Synthetic Data
- Iterative/Multilingual Transfer Learning
- On-the-fly Domain Adaptation
Incremental Training / Fine-tuning

Steps

1. Train a baseline model on the generic/out-of-domain corpus

2. Continue training the baseline model on the in-domain corpus (e.g. Luong & Manning, 2015)
Incremental Training / Fine-tuning
catastrophic forgetting

• Generic sentences are translated badly (e.g. unidiomatic structure or unknown words) by the fine-tuned model while they are translated better by the baseline model.

• Solution?

• Avoid fine-tuning for too many steps/epochs.

• In the fine-tuning step, add out-of-domain data to the in-domain data (e.g. (Chu et al., 2017))
Ensemble Decoding

- Ensemble Decoding: a method that allows using multiple models simultaneously during the translation time.
- Preprocessing requirements: include vocabulary of both corpora
- Ensemble the base model with the fine-tuned model (Freitag & Al-Onaizan, 2016)
- Better than using the fine-tuned model as it helps avoid “over-fitting”.
Data Weighting

• **Approach 1:** train one model on two corpora at the same time while giving a higher weight for the specialised corpus over the other generic corpus, or

• **Approach 2:** train the model on only one corpus that includes both generic segments and specialised segments, giving higher weights for specialised segments.
Using Monolingual Synthetic Data

Approach 1: Back Translation

- Improving Neural Machine Translation Models with Monolingual Data (Sennrich et al., 2016):
 1. Utilising monolingual *target sentences* after filling the source side with back-translation.
 2. Mixing the new synthetic data with parallel data for either training or fine-tuning.
Using Monolingual Synthetic Data

Approach 2: Pseudo In-Domain Data Selection

- Domain Adaptation via Pseudo In-Domain Data Selection (Chinea-Ríos et al., 2017):
 1. Selecting, from a large monolingual pool of sentences in the source language, those instances that are more related to a given [in-domain] test-set. (Chinea-Ríos et al., 2017 or Axelrod et al., 2011)
 2. Next, this selection is automatically translated and the generic baseline neural machine translation system is fine-tuned with this data.
Using Synthetic Data

• Better OOV Translation with Bilingual Terminology Mining (Huck et al., 2019):
 1. Translate the text and get OOVs.
 2. Translate them using bilingual word embeddings (BWEs), created with MUSE, and take the 5–best candidates.
 3. Using the 5 proposed target language words as queries to mine target-language sentences.
 4. Back-translate the sentences, forcing the back-translation of each of the five proposed target-language OOV-translation-candidates to be the original source-language OOV.
 5. Use this synthetic data to fine-tune the system; as a result, the translation of OOVs can be dramatically improved.
Iterative Transfer Learning

• UCAM Biomedical translation at WMT19: Transfer learning multi-domain ensembles (Saunders et al., 2019):

• Iterative transfer learning, B→A→B:
 1. Fine-tune the in-domain model B with the generic model A.
 2. Fine-tune the generic model A with the in-domain model B.

• Conditions:
 • Large in-domain data.
 • Similar to the generic data.
Multilingual Transfer Learning

1. Following the idea of multilingual zero-shot (Johnson et al., 2017) - M2M (multi-to-multi) model by adding an artificial token that specifies the target language to the beginning of each source sentence and shuffling the entire training data

2. Multi-stage Fine-tuning: Ja↔Ru MT system: 1) train a multilingual NMT model on out-of-domain Ja↔En and Ru↔En data; 2) fine-tune it on in-domain Ja↔En and Ru↔En data; and 3) further fine-tune it on Ja↔Ru data.

3. Using synthetic data via back-translation (with M2M) is useful and provides the best system.
On-the-fly Domain Adaptation

• Multi-Domain Neural Machine Translation through Unsupervised Adaptation (Farajian et al., 2017):
 1. Given an input sentence q, extract from the pool of parallel data the top (source, target) pairs in terms of similarity between the source and q.
 2. Use the retrieved pairs to fine-tune the model, which is then applied to translate q.
 3. Reset the adapted model to the original parameters, translate the next input sentence, and so on.

• Other approaches:
 • Domain Adaptive Inference for Neural Machine Translation (Saunders, et al., 2019)
 • Compact Personalized Models for Neural Machine Translation (Wuebker, et al., 2018)
Final Note: Full Words vs. Sub-words

• **Methods of sub-wording:** Byte Pair Encoding (BPE) & unigram language model

• **Popular Segmentation Strategy:** SentencePiece

• **Sub-wording can help in cases:**

 • Word variations in the same language, e.g. “translate vs. translation”

 • Compound words in the same language, e.g. “multi-tasking”. So now you model is not only able to translate “multi-tasking”, but any other phase that includes the word “multi”.

 • Shared words between languages

 • Common misspellings, like forgetting accents.

Let’s Connect!

- LinkedIn: https://www.linkedin.com/in/yasmin-moslem/
- Website: https://machinetranslation.io/
- Email: yasmin@machinetranslation.io