Interactive Machine Translation: From Research to Practice

Spence Green
spence@lilt.com

30 October 2016
Joint work with:

John DeNero Jason Chuang
Saša Hasan Thang Luong Minh
Joern Wuekber Sida Wang
Franz Och Jeff Heer
Daniel Cer Chris Manning
The physicist Arthur Eddington drew on Borel's image further in *The Nature of the Physical World* (1928), writing: If I let my fingers wander idly over the keys of a typewriter it might happen that my screed made an intelligible sentence.

Le physicien Arthur Eddington a attiré sur l'image de Borel dans le caractère du monde physique (1928), écrit: Si je laisse mes doigts se promener les bras croisés sur les touches de la machine à écrire, il peut arriver que mon chape fait une phrase intelligible.
2014: Predictive Translation Memory

À équiper le centre de formation Studeo qui est accessible aux personnes à mobilité réduite et dont nous travaillons à la réalisation dans le cadre de l’institut Jedlička, avec l’association Tap, et ça depuis six ans.

To equip studeo training centre which is accessible to people with reduced mobility and we work to achieve in the framework of the Institute jedlička, with tap, and been there for six years.

Des enseignants se rendent régulièrement auprès des élèves de l’institut Jedličkův et leur proposent des activités qui les intéressent et les amusent.

Teachers regularly visit Jedličkův Institute students and offered them activities of interest to them and having fun.

Les étudiants eux-mêmes n’ont pas les moyens de se rendre à des cours, nous essayons de les aider de cette manière.

The students themselves cannot be required to attend courses, we are trying to help themselves cannot

themselves could not

dans le cadre de l’institut Jedlička, nous transférerons ce

dans le cadre de l’institut Jedlička, nous transférerons ce

themselves do not

themselves cannot afford
2016: Lilt

We observe today not a victory of party but a celebration of freedom—symbolizing an end as well as a beginning—signifying renewal as well as change.

For I have sworn before you and Almighty God the same solemn oath our forbears prescribed nearly a century and three-quarters ago.

The world is very different now.
Classic Use Cases for MT

Assimilation – user pulls translation

“Gisting” – Google Translate / browser integration

Full-sentence MT

Main focus of the research community
Classic Use Cases for MT

Assimilation – user pulls translation

“Gisting” – Google Translate / browser integration

Full-sentence MT

Main focus of the research community

Dissemination – content publishing

Intent to communicate

“Post-editing” – MT as productivity enhancer

Main focus of the translation industry
the man and the machine are collaborating to produce not only a translation...but also a device...that is being constantly enhanced.

[Kay 1980]
Mixed-Initiative Systems

Translation is a classic **mixed-initiative** task

Mixed-initiative A human-computer discourse in which each party takes turns driving the task
Mixed-Initiative Systems

Translation is a classic **mixed-initiative** task

Mixed-initiative A human-computer discourse in which each party takes turns driving the task

Principles of Mixed-initiative User Interfaces
[Horvitz 1999]
Mixed-Initiative Systems

Translation is a classic **mixed-initiative** task

Mixed-initiative A human-computer discourse in which each party takes turns driving the task

Principles of Mixed-initiative User Interfaces [Horvitz 1999]

Basic Post-editing Violates Horvitz’ Principle

Provenance / trust #11–remember recent interactions
Mixed-Initiative Systems

Translation is a classic **mixed-initiative** task

Mixed-initiative A human-computer discourse in which each party takes turns driving the task

Principles of Mixed-initiative User Interfaces [Horvitz 1999]

<table>
<thead>
<tr>
<th>Basic Post-editing</th>
<th>Violates Horvitz’ Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance / trust</td>
<td>#11–remember recent interactions</td>
</tr>
<tr>
<td>Static</td>
<td>#9–collaborative refinement</td>
</tr>
</tbody>
</table>
Mixed-Initiative Systems

Translation is a classic **mixed-initiative** task

Mixed-initiative A human-computer discourse in which each party takes turns driving the task

Principles of Mixed-initiative User Interfaces [Horvitz 1999]

<table>
<thead>
<tr>
<th>Basic Post-editing</th>
<th>Violates Horvitz’ Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provenance / trust</td>
<td>#11–remember recent interactions</td>
</tr>
<tr>
<td>Static</td>
<td>#9–collaborative refinement</td>
</tr>
<tr>
<td>Domain mismatch</td>
<td>#12–learn by observing</td>
</tr>
</tbody>
</table>
Prior Work: One-slide Summary

Basic post-editing

Makes translators faster (c. 2010 research)

Produces higher quality (c. 2013)
Prior Work: One-slide Summary

Basic post-editing

- Makes translators faster (c. 2010 research)
- Produces higher quality (c. 2013)

Qualitative assessment: still poor, esp. for experts

[O’Brien and Moorkens 2014]
Prior Work: One-slide Summary

Basic post-editing

- Makes translators faster (c. 2010 research)
- Produces higher quality (c. 2013)

Qualitative assessment: still poor, esp. for experts [O’Brien and Moorkens 2014]

State of Interactive MT (c. 2014)

- Speed / quality assessment: no better than PE
- Translators like the idea, in practice suggestions are distracting
À équiper le centre de formation Studeo qui est accessible aux personnes à mobilité réduite et dont nous travaillons à la réalisation dans le cadre de l’institut Jedlička, avec l’association Tap, et ça depuis six ans.

To equip studeo training centre which is accessible to people with reduced mobility and we work to achieve in the framework of the Institute jedlička, with tap, and been there for six years.

Des enseignants se rendent régulièrement auprès des élèves de l’institut Jedličkův et leur proposent des activités qui les intéressent et les amusent.

Teachers regularly visit Jedličkův Institute students and offered them activities of interest to them and having fun.

Les étudiants eux-mêmes n’ont pas les moyens de se rendre à des cours, nous essayons de les aider de cette manière.

The students themselves cannot be required to attend courses, we are trying to help them.

Dans le cadre de l’institut Jedlička, nous transférerons ce projet dans un no
Interactions

Source comprehension – simple lexicon, source coverage

Target gisting – partial and complete suggestions

Target generation – autocomplete, re-ordering

Informed by Horvitz' (1999) mixed-initiative principles
Interactions

Source comprehension – simple lexicon, source coverage

Target gisting – partial and complete suggestions

Target generation – autocomplete, re-ordering

Informed by Horvitz’ (1999) mixed-initiative principles
Source Comprehension

Horvitz #6 – allowing efficient direct invocation and termination
Horvitz #5 – employing dialog to resolve key uncertainties
Human Subjects Experimental Design

<table>
<thead>
<tr>
<th>Task</th>
<th>Translate French-English or English-German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions</td>
<td>Post-edit (pe) and PTM</td>
</tr>
<tr>
<td>Expert Subjects</td>
<td>16 per language pair (from Proz)</td>
</tr>
<tr>
<td>Source Data</td>
<td>≈3,000 tokens of News / Medical / Software</td>
</tr>
</tbody>
</table>
Human Subjects Experimental Design

<table>
<thead>
<tr>
<th>Task</th>
<th>Translate French-English or English-German</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions</td>
<td>Post-edit (pe) and PTM</td>
</tr>
<tr>
<td>Expert Subjects</td>
<td>16 per language pair (from Proz)</td>
</tr>
<tr>
<td>Source Data</td>
<td>≈3,000 tokens of News / Medical / Software</td>
</tr>
</tbody>
</table>

Three research questions:

1. Does PTM reduce time?
2. Does PTM increase quality?
3. Do subjects use interactive aids?
PTM is better for Fr-En ($p < 0.05$)
Question #2 | Time

PTM is slower for En-De ($p < 0.01$)
Post-edit mode was easier at first, but the interactive mode was better once I got used to it.

If I had time to use the interactive tool and grow accustomed to its way of functioning, it would be quite useful...

I am used to this [post-edit], this is how Trados works.
The Contribution of End-Users to the TransType2 Project

This target-text mediated interactive MT is certainly an intriguing idea – but will it work? Only the system’s intended end-users, i.e. professional translators, can answer that question. The TransType2 (henceforth TT2) Consortium includes two translation firms, one in Canada (Société Gamma Inc.) and one in Spain (Celer Soluciones S.L.). These partners play a very important role in the TT2 project, serving to balance its ambitious research program with the concrete needs of real end-users. The project provides for various channels through which the end-users can interact with the research teams who are developing the translation engines. One of the most important of these are the user trials that begin about half-way through the project and continue right up to its conclusion, at month thirty-six.

In the following section, we describe in more detail the role of these end-users in the TransType2 project. In section 3, we present the protocol for the latest round of user evaluations, which have just been completed at Société Gamma and at Celer Soluciones. In section 4, we report on the main results obtained in those trials – results which are necessarily tentative, since the project still has more than a year to run. In the final section, we draw some conclusions about the future of IMT.

TransType – users typed 69% of text

[Langlais and Lapalme 2002]
Question #3 | Interactive Usage

TransType – users typed 69% of text
[Langlais and Lapalme 2002]
End of 2014: Open Problems

Online adaptation

- Not online, no domain adaptation
- Not tuned for prefixes
End of 2014: Open Problems

Online adaptation

Not online, no domain adaptation
Not tuned for prefixes

Prefix decoding was poor

Low next word accuracy
No diversity
End of 2014: Open Problems

Online adaptation
- Not online, no domain adaptation
- Not tuned for prefixes

Prefix decoding was poor
- Low next word accuracy
- No diversity

UI issues
- Dropdown is distracting
- High learning curve
End of 2014: Open Problems

Online adaptation
Not online, no domain adaptation
Not tuned for prefixes

Prefix decoding was poor
Low next word accuracy
No diversity

UI issues
Dropdown is distracting
High learning curve
Hierarchical Incremental Adaptation

Goal: Reduce repeated MT errors
Hierarchical Incremental Adaptation

Goal: Reduce repeated MT errors

- After each segment is translated, update the model
Hierarchical Incremental Adaptation

Goal: Reduce repeated MT errors

- After each segment is translated, update the model
- Translation model: updates to features and weights
Hierarchical Incremental Adaptation

Goal: Reduce repeated MT errors

- After each segment is translated, update the model
- Translation model: updates to features and weights
- Hierarchical domains: genres and documents

Each document has 3 domains: root, its genre, & the document itself

[Wuebker et al. 2015]
Incremental Adaptation: Approach

Weight adaptation

- Feature augmentation (FEDA) [Daumé III 2007]

 → all weights are replicated for all domains
Incremental Adaptation: Approach

Weight adaptation

- Feature augmentation (FEDA)\[Daumé III 2007]\n → all weights are replicated for all domains

- For each example \((f, e)\), active domain features are added
Incremental Adaptation: Approach

Weight adaptation

- Feature augmentation (FEDA)
 → all weights are replicated for all domains
 [Daumé III 2007]
- For each example \((f, e)\), active domain features are added
- SGD with AdaGrad
 [Duchi et al. 2011]
Incremental Adaptation: Approach

Weight adaptation

► Feature augmentation (FEDA) [Daumé III 2007]
 → all weights are replicated for all domains

► For each example \((f, e)\), active domain features are added

► SGD with AdaGrad [Duchi et al. 2011]

Translation model adaptation

► Learn separate genre-specific translation model features
Incremental Adaptation: Approach

Weight adaptation

- Feature augmentation (FEDA) [Daumé III 2007]
 - all weights are replicated for all domains
- For each example \((f, e)\), active domain features are added
- SGD with AdaGrad [Duchi et al. 2011]

Translation model adaptation

- Learn separate genre-specific translation model features
- Stream-based updates with suffix arrays [Levenberg et al. 2010]
Incremental Adaptation: Workflow

Initialize: baseline weights \mathbf{w}_t

For each new sentence pair (f, e):

1. Stochastic weight update \mathbf{w}_{t+1}
Incremental Adaptation: Workflow

Initialize: baseline weights \mathcal{W}_t

For each new sentence pair (f, e):

1. Stochastic weight update \mathcal{W}_{t+1}
2. align (f, e) via forced decoding or IBM-2
 \[\Rightarrow \text{obtain alignment } \alpha \]
Incremental Adaptation: Workflow

Initialize: baseline weights \mathbf{w}_t

For each new sentence pair (f, e):

1. Stochastic weight update \mathbf{w}_{t+1}
2. align (f, e) via forced decoding or IBM-2

 \Rightarrow obtain alignment α
3. add (f, e, α) to genre-specific translation model corpora
Incremental Adaptation: Experiments

German→English training data

- 6.4M parallel sentences: WMT 2015 + Patents (PatTr)
- 4B monolingual English tokens

Test data

- News (WMT)
- Lectures (IWSLT)
- Patents (PatTR)

MT system

Phrasal w/ 5gm LM [Green et al. 2014]
Incremental Adaptation: BLEU (%) Results

<table>
<thead>
<tr>
<th></th>
<th>Lectures</th>
<th>News</th>
<th>Patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>25.8</td>
<td>24.9</td>
<td>49.0</td>
</tr>
<tr>
<td>+ genre weights</td>
<td>26.6 (+0.8)</td>
<td>25.1 (+0.2)</td>
<td>49.4 (+0.4)</td>
</tr>
<tr>
<td>+ genre TM</td>
<td>27.7 (+1.9)</td>
<td>25.7 (+0.8)</td>
<td>53.2 (+4.2)</td>
</tr>
</tbody>
</table>

Boldface: \(p < 0.05 \) vs. baseline
Incremental Adaptation: BLEU (%) Results

<table>
<thead>
<tr>
<th></th>
<th>Lectures</th>
<th>News</th>
<th>Patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>25.8</td>
<td>24.9</td>
<td>49.0</td>
</tr>
<tr>
<td>+ genre weights</td>
<td>26.6 (+0.8)</td>
<td>25.1 (+0.2)</td>
<td>49.4 (+0.4)</td>
</tr>
<tr>
<td>+ genre TM</td>
<td>27.7 (+1.9)</td>
<td>25.7 (+0.8)</td>
<td>53.2 (+4.2)</td>
</tr>
<tr>
<td>+ document weights</td>
<td>28.0 (+2.2)</td>
<td>25.7 (+0.8)</td>
<td>53.4 (+4.4)</td>
</tr>
</tbody>
</table>

Boldface: $p < 0.05$ vs. baseline
Incremental Adaptation: BLEU (%) Results

<table>
<thead>
<tr>
<th></th>
<th>Lectures</th>
<th>News</th>
<th>Patents</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>25.8</td>
<td>24.9</td>
<td>49.0</td>
</tr>
<tr>
<td>+ genre weights</td>
<td>26.6 (+0.8)</td>
<td>25.1 (+0.2)</td>
<td>49.4 (+0.4)</td>
</tr>
<tr>
<td>+ genre TM</td>
<td>27.7 (+1.9)</td>
<td>25.7 (+0.8)</td>
<td>53.2 (+4.2)</td>
</tr>
<tr>
<td>+ document weights</td>
<td>28.0 (+2.2)</td>
<td>25.7 (+0.8)</td>
<td>53.4 (+4.4)</td>
</tr>
<tr>
<td>+ sparse features</td>
<td>28.1 (+2.3)</td>
<td>25.9 (+1.0)</td>
<td>54.3 (+5.3)</td>
</tr>
</tbody>
</table>

Boldface: $p < 0.05$ vs. baseline
End of 2014: Open Problems

Online adaptation
- Not online, no domain adaptation
- Not tuned for prefixes

Prefix decoding was poor
- Low next word accuracy
- No diversity

UI issues
- Dropdown is distracting
- High learning curve
Prefix-Constrained Translation Inference

A user enters a prefix, MT system predicts the rest
Prefix-Constrained Translation Inference

A user enters a prefix, MT system predicts the rest

Example:
Yemeni media report that there is traffic chaos in the capital.

Once the user has typed:
Jemenitische Medien berichten von einem Verkehrschaos

The system suggests:
in der Hauptstadt.
Prefix-Constrained Translation Inference

A user enters a prefix, MT system predicts the rest

Example:
Yemeni media report that there is traffic chaos in the capital.

Once the user has typed:
Jemenitische Medien berichten von einem Verkehrschaos

The system suggests:
in der Hauptstadt.

▶ Align the prefix to the source to determine what remains
Prefix-Constrained Translation Inference

A user enters a prefix, MT system predicts the rest

Example:
Yemeni media report that there is traffic chaos in the capital.

Once the user has typed:
Jemenitische Medien berichten von einem Verkehrschaos

The system suggests:
in der Hauptstadt.

Align the prefix to the source to determine what remains

- Predict a suffix for the prefix
Inference: Baseline

Prior work [Barrachina et al. 2008; Ortiz-Martínez et al. 2009]

- Standard beam search (force decoding)

 One beam per source cardinality

 ![Diagram showing beam search]

- Discard all hypotheses that violate prefix e_p
Inference: Target Beam Search

1. Phrase alignment of source f and prefix e_p
 ▶ Associate each beam with target cardinality

prefix length 1 2 3 4 5 6
Inference: Target Beam Search

1. Phrase alignment of source f and prefix e_p
 ▶ Associate each beam with target cardinality

2. Generate suffix e_s with standard beam search
 ▶ Copy partial hypotheses to source beams
 ▶ Standard cube-pruning beam search
Prefix Tuning

Example:
Yemeni media report that there is traffic chaos in the capital.

Prefix: Jemenitische Medien berichten von einem Verkehrsschaos
Suffix: in der Hauptstadt.
Prefix Tuning

Example:
Yemeni media report that there is traffic chaos in the capital.

Prefix: Jemenitische Medien berichten von einem Verkehrschaos
Suffix: in der Hauptstadt.

⇒ Hierarchical, incremental tuning

Four feature domains:
- ROOT
Prefix Tuning

Example:
Yemeni media report that there is traffic chaos in the capital.

Prefix: Jemenitische Medien berichten von einem Verkehrsschaos
Suffix: in der Hauptstadt.

⇒ Hierarchical, incremental tuning

[Wuebker et al. 2015]

Four feature domains:

- **ROOT**
- **PREFIX**
Prefix Tuning

Example:
Yemeni media report that there is traffic chaos in the capital.

Prefix: Jemenitische Medien berichten von einem Verkehrschaos
Suffix: in der Hauptstadt.

⇒ Hierarchical, incremental tuning

Four feature domains:

- ROOT
- PREFIX
- SUFFIX

[Wuebker et al. 2015]
Prefix Tuning

Example:
Yemeni media report that there is traffic chaos in the capital.

Prefix: Jemenitische Medien berichten von einem Verkehrschaos
Suffix: in der Hauptstadt.

⇒ Hierarchical, incremental tuning
[Wuebker et al. 2015]

Four feature domains:

- ROOT
- PREFIX
- SUFFIX
- OVERLAP
Results: Phrase-based

English → French (newstest2014)

<table>
<thead>
<tr>
<th></th>
<th>pxBleu ↑</th>
<th>WPA ↑</th>
<th>KSR ↓</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>40.9</td>
<td>38.0</td>
<td>61.7</td>
</tr>
<tr>
<td>target beam</td>
<td>44.1</td>
<td>49.4</td>
<td>51.1</td>
</tr>
<tr>
<td>prefix tuning</td>
<td>44.7</td>
<td>50.9</td>
<td>50.5</td>
</tr>
</tbody>
</table>

pxBleu Prefix-Bleu (Bleu for the suffix only)

WPA Word Prediction Accuracy

KSR Key-Stroke-Ratio

[Koehn et al. 2014]

[Och et al. 2003]
Prefix NMT?

\[
\log p(e|f) = \sum_{i=1}^{|e|} \log p(e_i|e_{<i}, f; \theta)
\]

\[
\theta = \arg \min_{\theta} \sum_{f,e} \sum_{i} -\log p(e_i|e_{<i}, f; \theta)
\]

- \(e_{<i}\) can be interpreted as target prefix \(e_p\)
Prefix NMT?

\[
\log p(e|f) = \sum_{i=1}^{|e|} \log p(e_i|e_{<i}, f; \theta)
\]

\[
\theta = \arg \min_{\theta} \sum_{f,e} \sum_{i} - \log p(e_i|e_{<i}, f; \theta)
\]

- \(e_{<i}\) can be interpreted as target prefix \(e_p\)

Modification
- Condition on user prefix \(e_p\) instead of partial hypothesis
Results: Prefix NMT

English → German (autodesk)

<table>
<thead>
<tr>
<th></th>
<th>Bleu ↑</th>
<th>pxBleu ↑</th>
<th>WPA ↑</th>
<th>sec/seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>target beam</td>
<td>44.5</td>
<td>62.2</td>
<td>46.0</td>
<td>0.051</td>
</tr>
<tr>
<td>NMT single</td>
<td>40.6</td>
<td>-3.9</td>
<td>61.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>NMT ensem.</td>
<td>44.3</td>
<td>-0.2</td>
<td>64.7</td>
<td>+2.5</td>
</tr>
</tbody>
</table>

NMT system: [Luong et al. 2015]
Results: Prefix NMT

English→German (autodesk)

<table>
<thead>
<tr>
<th></th>
<th>Bleu ↑</th>
<th>pxBleu ↑</th>
<th>WPA ↑</th>
<th>sec/seg</th>
</tr>
</thead>
<tbody>
<tr>
<td>target beam</td>
<td>44.5</td>
<td>62.2</td>
<td>46.0</td>
<td>0.051</td>
</tr>
<tr>
<td>NMT single</td>
<td>40.6</td>
<td>-3.9</td>
<td>61.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>NMT ensem.</td>
<td>44.3</td>
<td>-0.2</td>
<td>64.7</td>
<td>+2.5</td>
</tr>
</tbody>
</table>

NMT system: [Luong et al. 2015]
Recent NMT Work

Idea: add NMT as feature
[Junczys-Dowmunt and Grundkiewicz 2016]

▶ en-de model of [Sennrich et al. 2016]
Recent NMT Work

Idea: add NMT as feature [Junczys-Dowmunt and Grundkiewicz 2016]

- en-de model of [Sennrich et al. 2016]

Reduced beam size: 25
Recent NMT Work

Idea: add NMT as feature [Junczys-Dowmunt and Grundkiewicz 2016]

▶ en-de model of [Sennrich et al. 2016]

Reduced beam size: 25

Virtualized CPU (Google Cloud); native ops in OpenBLAS

<table>
<thead>
<tr>
<th>decoding cores</th>
<th>ms / scored token</th>
<th>ms / translated token</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>2,500</td>
</tr>
<tr>
<td>16</td>
<td>32</td>
<td>1,300</td>
</tr>
</tbody>
</table>
Interactive NMT Open Issues

Decoding time

- Distillation / pruning
- Reduced precision arithmetic
Interactive NMT Open Issues

Decoding time
- Distillation / pruning
- Reduced precision arithmetic

Periodic updates to model architecture
- PBMT: add feature, initialize to zero
Interactive NMT Open Issues

Decoding time
- Distillation / pruning
- Reduced precision arithmetic

Periodic updates to model architecture
- PBMT: add feature, initialize to zero

Dynamic updates to word-piece / segmentation model
- Hypothesis: high user sensitivity to dropped content words
End of 2014: Open Problems

Online adaptation

- Not online, no domain adaptation
- Not tuned for prefixes

Prefix decoding was poor

- Low next word accuracy
- No diversity

UI issues

- Dropdown is distracting
- High learning curve
Revisiting the Autocomplete Dropdown

1. Autocomplete works best for limited vocabularies
2. Distracting: 100% visual acuity for only 4–5 characters
3. No post-edit mode
1. Autocomplete works best for limited vocabularies
Revisiting the Autocomplete Dropdown

1. Autocomplete works best for limited vocabularies
2. **Distracting**: 100% visual acuity for only 4–5 characters
Revisiting the Autocomplete Dropdown

1. Autocomplete works best for limited vocabularies
2. **Distracting**: 100% visual acuity for only 4–5 characters
3. No post-edit mode
2014 vs. 2016

Several music groups and **musical** groups and performers?
(Demo)
Interactive Machine Translation:
From Research to Practice

Spence Green
spence@lilt.com

30 October 2016
References I

Koehn, Philipp, Chara Tsoukala, and Herve Saint-Amand (2014). “Refinements to Interactive Translation Prediction Based on Search Graphs”. In: *ACL*.

References II

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective Approaches to Attention-based Neural Machine Translation”. In: EMNLP.

