Machine Translation and Professional Translators Community

During the last couple of years, machine translation post-editing has become one of the hottest most discussed topics in the translation industry as evidenced by conferences, forums and webinars. What is the motivation driving this new found interest?

Translators are motivated to use machine translation output since the quality of engines has reached the point where using them leads to proven productivity gains, ranging between 30 and 300%. Thus, machine translation is becoming a commonplace productivity tool similar to translation memories. The emergence of several post-editing standards that are tied to the desired quality levels of the final output allows translators to have additional income opportunities translating content that previously remained monolingual.

Machine translation is still not perfect, and there are recurring challenging issues for post-editors such as lexical coverage, word order, compound formation, word form agreement, omissions and several more. However, a recent positive development, established feedback loops back to the MT engine developers and deployment managers, gives translators more confidence in future engine improvements.
Just as with human translation, post-editing throughput can vary and depends on:

AMTA is actively supporting machine translation as a productivity tool both for language service providers and freelance translators. In all of our past conferences, members of the professional translation community presented their findings on MT adoption as a part of the commercial user track (URL to the past conference proceedings). Synchronizing AMTA and ATA (American Translators Association) conferences for several years helped both organizations drive attendance and draw interest to the topic of machine translation as a productivity tool for translators.

Training professional post-editors 

What is post-editing?

           The “term used for the correction of machine translation output by human linguists/editors” (Veale and Way 1997)

          “Checking, proof-reading and revising translations carried out by any kind of translating automaton”. (Gouadec 2007)

The choice of whether to translate from scratch (“human translation”) or post-edit machine-translated output is driven by the suitability of the source content for machine translation. <>To-date the professional translators community has reported to be achieving the best results with post-editing  the more formal, organized and structured content types with repetitive syntactic patters and predictable use of terminology, which makes them easier for the machine translation engines to handle:

•   Contracts
•   Patents
•   Annual Corporate Reports
•   Light Marketing (as opposed to “transcreation”)
•   Software Documentation
•   Software User Interface
•   SEO (Search Engine Optimization) keywords
•   e-Learning Content
•   User Guides and Product Manuals
•   Internal Corporate Communications
•   Wikis
•   Knowledge Bases
•   Proposals / Draft Applications

The decision on which post-editing quality level to select is mainly determined by the visibility, perishability and the target audience for the content, or “utility”, which is the term lately adopted by the industry. The content utility also dictates the number of errors and the error type tolerance for the given content type. As outlined in the TAUS post-editing guidelines, it is essential that the post-editors are given very explicit and clear set of instructions that describe the desired quality levels.

At the moment two levels of post-editing are recognized as industry standard: “good enough”, often referred to as “light post-editing”, and “publishable”, where the final output quality is expected to be on par with the translation performed from scratch.

The table below is an example of two levels of post editing:

The best results are achieved when post editors and machine translation engine developers are in a continuos constructive dialog around the challenges translators are facing when post editing the MT output. This both allows the post-editors to build the sense of ownership of the engines, and helps the developers to tailor their engine roadmap to the actual needs of translators.
While the “adequacy” – related feedback helps with selecting the appropriate engine training data, the “fluency” and “readability” feedback helps with fine-tuning the core engine functionality, including the language-related and the engineering issues, such as handling of metadata and locale-specific conventions.

Recognizing the need for developing a skilled and qualified post-editors workforce, several major Language Service Providers and now publish their “how-to” introductory courses on the principles and best practices for post-editing machine translation output:
Welocalize:  http://www.welocalize.com/wemt/machine-translation-overview/

SDL: http://www.sdl.com/campaign/lt/eBooks/language-technology-ebooks-tab2.html#tabs

Hunnect: http://www.hunnectacademy.com/en/content/content/7

Industry Initiatives on Post-editing Machine Translation Output

Below are URLs to some of the industry initiatives relevant to the use of machine translation as a post-editing productivity tool. The list in maintained in a “work in progress” mode and is being updated regularly.

TAUS Post-Editing Guidelines (created in partnership with CNGL): general post-editing guidelines for “good enough” and “human translation level” post-editing. TAUS has also recently published guidelines on pricing post-editing work and measuring post-editors’ productivity.

TAUS Dynamic Quality Framework: a set of tools and methodologies for evaluating post-editors’ productivity, selecting a machine translation engine most suitable for a specific project and reviewing machine translation and post-editing errors in a structured environment.

QTLaunchpad: European Commission-funded collaborative research initiative dedicated to overcoming quality barriers in machine and human translation and language technologies.

2013 MT Summit Workshop on Post-Editing Technologies and Practice: a recent workshop on post-editing organized by Dr. Sharon O’Brien, Michel Simard and Lucia Specia (follow the URLs to their professional web pages to see more publications).

There are several LinkedIn groups dedicated to post-editing of machine translation output and other translation automation tools:

Automated Language Translation (MT/Machine Translation): the group focusing on discussions around the trends and developments in machine translation, with the members both from the development and user side.

AMTA 2020 | Registration is Open – Conference Program is Available!

by Darius Hughes | August 20, 2020

AMTA 2020 – VIRTUAL October 6-9 The 14th biennial conference of the Association for Machine Translation in the Americas. Registration Details The single registration fee includes attendance at all tutorials and workshops, special student mentoring sessions, exhibitions by vendors and conference sponsors, and all presentations in the three conference tracks: Commercial, Research, and Government. Additionally, […]

AMTA 2020 Read more...

AMTA 2020 | Submission Deadline Extended! Final Call for Participation and Conference News

by Darius Hughes | June 25, 2020

AMTA 2020 – VIRTUAL October 6-9 New Submission Deadline: Monday, July 13, 2020 at 11:59pm (AOE). The 14th biennial conference of the Association for Machine Translation in the Americas.  While we have already received several submissions, we have noted that due to pandemic-related and other challenges, there are others who desire to submit but need […]

AMTA 2020 Read more...

AMTA 2020 | Workshop on the Impact of Machine Translation (iMpacT 2020)

by Darius Hughes | March 19, 2020

Machine Translation is here to stay. For many years, MT has seen advances in the quality of output, the number of users, language pair and domain coverage, as well as the number of enterprises investing in MT. MT is now an integral part of most CAT tools and post-editing is a de facto task required […]

AMTA 2020 Read more...

AMTA 2020 | 1st Workshop on Post-Editing in Modern-Day Translation (PEMDT1 )

by Darius Hughes | March 19, 2020

Building on the success of past workshops that address post-editing, such as the ones held at AMTA 2018 and MT Summit 2019, we present PEMDT1. Like its predecessors, this workshop will bring together post-editing translation tool users (practitioners) and researchers to compare and contrast how each use digital technology for translation. Specifically, the workshop focuses […]

AMTA 2020 Read more...

AMTA 2020 | Now a VIRTUAL Conference rescheduled for October 6-9

by Darius Hughes | March 18, 2020

The 14th biennial conference of the Association for Machine Translation in the Americas has been rescheduled to OCTOBER 6-9 and will be held as a virtual conference using Microsoft Teams, a powerful, enterprise collaboration platform. It was previously scheduled from September 8th to the 12th in Orlando, Florida We apologize for sending out this notice only now, but along with the organizers […]

AMTA 2020 Read more...

MT Summit XVIII – 2021 | Hold the Date!

by Darius Hughes | March 18, 2020

The next MT Summit conference is now set to be held at the Sheraton Orlando Lake Buena Vista Resort in Orlando, Florida from August 16-20, 2021. We invite MT practitioners from industry, academia, and government around the world, as well as students and other parties interested in MT to mark these dates on their calendars […]

AMTA 2021 Read more...