< Go Back

MT as part of a translation service

by | October 7, 2016
read

Since machine translation started to be commercially available, commercial users of machine translation had the challenge to identify use cases where MT increases value for the respective company. Over the years, three major use case categories seem to have evolved:

Machine translation as a service can be either a byproduct for some teams and companies that develop MT technology for above mentioned use cases, or they focus on MT technology development, that customers then use for these use cases. The use cases in this category can also be from MT service, over HAMT service, to machine-aided human translation MAHT service.

MT as a service is offered in different business models:

  1. The oldest model is the machine-based perpetual software license (MBPSL). This model allows the user to use the machine translation service (most of the time on hardware the user has to purchase separately) from the time the license is purchased. Maintenance contracts allow the user to receive updates and enhancements timely and either for free or for a discounted price.
  2. The second model is the machine-based annual software license (MBASL). This model allows the user to purchase a license similar to the machine-based perpetual license, but the license is constrained to only one year, and has to be renewed or extended annually. The advantage of this is that the upfront cost is lower, the disadvantage is that the the total cost is usually higher than MBPSL plus maintenance, if the user decides to stay in the same licensing model.
  3. The third model is the volume-based service usage pricing (VBSUP). This is a service, where a translation service is offered, and the pricing is by word, by character, by byte or another unit. Other dimension is often to allow the user to pick and choose the expected quality, e.g. by allowing different levels where the human is in the loop, or by using more hardware resources for each translation (and higher cost at the provider’s side, therefor the higher cost to the consumer).

Google Translate

Google Translate is a translation service that provides instant translations between dozens of different languages. It can translate words, sentences and web pages between any combination of our supported languages. With Google Translate, we hope to make information universally accessible and useful, regardless of the language in which it’s written. When Google Translate generates a translation, it looks for patterns in hundreds of millions of documents to help decide on the best translation for you. By detecting patterns in documents that have already been translated by human translators, Google Translate can make intelligent guesses as to what an appropriate translation should be. This process of seeking patterns in large amounts of text is called “statistical machine translation”. Since the translations are generated by machines, not all translation will be perfect. The more human-translated documents that Google Translate can analyse in a specific language, the better the translation quality will be. This is why translation accuracy will sometimes vary across languages.

http://googletranslate.blogspot.com

Microsoft Translator

Bing Translator (previously Live Search Translator and Windows Live Translator) is a user facing translation portal provided by Microsoft as part of its Bing services to translate texts or entire web pages into different languages. All translation pairs are powered by the Microsoft Translator statistical machine translation platform and web service, developed by Microsoft Research, as its backend translation software. Two transliteration pairs (between Chinese Traditional and Chinese Simplified) are provided by Microsoft’s Windows International team.

http://blogs.msdn.com/b/translation/

SDL BeGlobal

With SDL BeGlobal, business users are now enabled to manage secure, global and trusted communications with customers in real-time through one central interface for multiple types of content, communication and social media while significantly reducing their translation costs. The application can also be used by translation teams to increase productivity for content that requires human translation or review or reduce post-editing costs through crowd-sourcing.

http://www.sdl.com/products/sdl-beglobal/

SYSTRAN

SYSTRAN’s SYSTRANLinks is a comprehensive website-translation solution, it offers an online CMS platform that lets you launch and manage your localization projects with unprecedented ease – all from an intuitive centralized base. And it gives you a rich range of user-friendly tools that allow you to constantly enhance your content and manage the entire localization process more easily.

http://blog.systranlinks.com

IBM

IBM® WebSphere® Translation Server for Multiplatforms is a machine translation (MT) offering that can help companies remove language as a barrier to global communication and commerce. It allows you to leverage your existing web infrastructure to provide content to users in their native language at a lower cost than traditional translation.

WebSphere Translation Server for Multiplatforms:

– Provides a robust, scalable platform for providing content in multiple languages.

– Offers advanced MT features to accelerate translation, lower costs and help improve customer service.

– Integrates with your existing web infrastructure to help simplify and lower the costs of integration and implementation efforts.

http://www.ibm.com/software/products/en/translation-server

Keep reading

Government MT Users

Features of machine translation (MT) implementations and project efforts in official settings, regardless of jurisdiction, are guided by at...

by Mike Dillinger | October 7, 2016
Read more...

MT for workflow optimization

For the category of workflow optimization, the main criterion is “cost”, but also “revenue”. To achieve that, MT use...

by Mike Dillinger | October 7, 2016
Read more...

MT for big data

The category of use cases that try to cope with the “big data” challenge is mainly trying to make...

by Mike Dillinger | October 7, 2016
Read more...